Key Technologies

  • Single cell analysis (C1 and chip qPCR on single cell level)
  • Stem cell core (hypoxic showcase, educational purposes)
  • RNACore, with modified mRNA technology (Cas 9 genome editing technology)
  • Heterokaryon technology
  • Zebra fish facility

Innate Immunity in Nuclear Reprogramming

Our investigators advanced the field of stem cell therapy by showing that innate immune pathways are critical in the reprogramming process that changes somatic cells into induced pluripotent stem cells (iPSCs). We discovered that this beneficial innate immune response could be activated with small molecule agonists of TLR3 to enhance the efficiency of iPSC generation. This approach avoids integrating viral vectors, which limit therapeutic applications, and provides a method to efficiently generate therapeutic grade stem cells.

Therapeutic Transdifferentiation

The center is developing methods for direct reprogramming to induce transdifferentiation of one somatic type cell into another cell type for therapeutic applications in healing. For example, fibroblasts migrate into areas of a myocardial infarction to form scars where heart tissue is damaged. If they could be transformed into endothelial cells at the site of damage, they could instead form the microvasculature needed to provide an environment that nurtures cardiac stem cells. This would improve healing with functional tissue, rather than with scar tissue.

The team is actively developing small molecules to induce human fibroblasts to transdifferentiate into endothelial cells. By combining these small molecules with nanotechnology-based delivery systems, the team is also enhancing this approach, by increasing the retention time. This optimizes the specificity of targeting to damaged tissue, and improves both pharmacokinetics and pharmacodynamics by fine tuning the sustained and controlled release parameters.